![](https://static.wixstatic.com/media/a33f3b_8a94298a93cf47c6951544af16197d5c~mv2.png/v1/crop/x_0,y_25,w_717,h_250,q_85,enc_avif,quality_auto/a33f3b_8a94298a93cf47c6951544af16197d5c~mv2.png)
Uncovering the sweet aspects of life
![Untitled design.png](https://static.wixstatic.com/media/a33f3b_85326a0a7dfb4167a8e66b9e4614af78~mv2.png/v1/fill/w_980,h_327,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/a33f3b_85326a0a7dfb4167a8e66b9e4614af78~mv2.png)
Research Interests
Our team research interests can be divided into three interconnected projects with the same aim: solving how glycocode is created and how it is read and translated by glycan-binding proteins.
01
Mucin O-glycosylation:
Catalysis and Molecular Recognition
![project 1_try_edited_edited.jpg](https://static.wixstatic.com/media/a33f3b_76216b59012f41ad994a76de3ba99502~mv2.jpg/v1/fill/w_600,h_320,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/project%201_try_edited_edited.jpg)
How the mucin O-glycosylation (natural and tumour-associated) is created by key glycosyltransferases?
In this project we aim to 1) decode the structural features within the catalysis of GTs; 2) unveil the molecular recognition process of natural substrates/products and mimetics by GTs and 3) glycoengineered mucin O-glycodomains containing different tumour-associated glycans and densities for molecular recognition studies in project 2 and 3. Our work in this project provide structural insights for the rational design of inhibitors, to block tumour-glycome expression and tumour growth, and potentially deliver mucin-based structures able to interfere with the aberrant tumour-glycans/immune-related lectins interactions or with interaction with pathogens.
​
Recent selected publications:
-
H. Coelho, M. de las Rivas, A. S. Grosso, A. Diniz, C. O. Soares, R. A. Francisco, J. S. Dias, I. Compañon, L. Sun, Y. Narimatsu, S. Y. Vakhrushev, H. Clausen, E. J. Cabrita, J. Jiménez-Barbero, F. Corzana, R. Hurtado-Guerrero*, and F. Marcelo*,"Atomic and Specificity Details of Mucin 1 O -Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling"JACS Au. 2022;2:631–645; DOI: 10.1021/jacsau.1c00529 (corresponding author).
-
A. M. González-Ramírez, A. S. Grosso, Z. Yang, I. Compañón, H. Coelho, Y. Narimatsu, H. Clausen, F. Marcelo, F. Corzana, R. Hurtado-Guerrero, "Structural Basis for the synthesis of the core 1 structure by C1Gal-T1". Nat. Comm. 13 1 (2022): 2398. https://doi.org/10.1038/s41467-022-29833-0.
-
M. de las Rivas, E. J. P. Daniel, Y. Narimatsu, I. Compañón, K. Kato, P. Hermosilla, A. Thureau, L. Ceballos-Laita, H. Coelho, P. Bernadó, F Marcelo, L. Hansen, R. Maeda, A. Lostao, F. Corzana, H. Clausen, T. A. Gerken & R. Hurtado-Guerrero* "Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3". Nature Chemical Biology 16 3 (2020): 351-360. http://dx.doi.org/10.1038/s41589-019-0444-x.
-
M. de las Rivas, E. J. P. Daniel, H. Coelho, E. Lira-Navarrete, L. Raich, I. Compañón, A. Diniz, L. Lagartera, J. Jiménez-Barbero, H. Clausen, C. Rovira, F. Marcelo**, F. Corzana, T. A. Gerken*, R Hurtado-Guerrero* "Structural and Mechanistic Insights into the Catalytic-Domain-Mediated Short-Range Glycosylation Preferences of GalNAc-T4". ACS Central Science 4 9 (2018): 1274-1290. http://dx.doi.org/10.1021/acscentsci.8b00488
-
M. de las Rivas, H. Coelho, A. Diniz, E. Lira-Navarrete, I. Compañón, J. Jiménez-Barbero, K. T. Schjoldager, E. P. Bennett, S. Y. Vakhrushev, H. Clausen, F. Corzana, F. Marcelo*, R. Hurtado-Guerrero* "Structural Analysis of a GalNAc-T2 Mutant Reveals an Induced-Fit Catalytic Mechanism for GalNAc-Ts". Chem. Eur. J. 24 33 (2018): 8382-8392. http://dx.doi.org/10.1002/chem. 201800701 (corresponding author).
-
M. de las Rivas, E. Lira-Navarrete, E. J. P. Daniel, I. Compañón, H. Coelho, A. Diniz, J. Jiménez-Barbero, J. M. Peregrina, H. Clausen, F. Corzana, F. Marcelo, G. Jiménez-Osés, T. A. Gerken, R. Hurtado-Guerrero* "The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences". Nat. Comm. 8 1 (2017) https://doi.org/10.1038/s41467-017-02006-0
02
​Tumour-associated mucin O-glycans and their interaction with immune-related receptors
​
​
Deciphering the molecular basis of how tumour-glycans/glycomimetics are read by immune related GBPs
In this project we aim to 1) decode the structural features that govern the recognition tumour-glycome recognition by immune-related GBPs; 2) structural-guided design of glycomimetics and/or glycopeptide mimetics targeting tumour-glycome/GBPs recognition to potentially alleviate anti-tumour suppressive immune responses and and/or metastasis; 3) rational design of tumour-glycans based vaccine(s) to induce the production of antibodies towards specific tumour-glycan antigens. Hence, using an integrated methodology that includes chemical synthesis, molecular biology, molecular modelling, and biophysical and structural-based techniques, with a particular focus on NMR-based binding methods we aim to characterize at the structural level natural tumour-associated glycans, glycomimetics and/or glycopeptide mimetics as well their interactions with different glycan-binding proteins (GBPs: lectins and antibodies). In the past years we have focused on human macrophage galactose C-type lectin (MGL), which recognize recognize N-acetylgalactosamine (α- or β- GalNAc) residues found in several tumour-glycans, in particular sialylated and non-sialylated form of Tn-epitopes in mucins. Galectin-3 was also a target of interested due to its involvement in the recognition of tumour-associated glycans. In addition, the molecular determinants that govern the recognition of tumour-associated mucin O-glycans by anti-glycan and anti-mucin antibodies has also been investigated. More recently, we have developed some research devoted to the immunoregulatory siglecs family of lectins, namely in siglec-7/9 and 15.
​
Selected publications:​
-
C. Oliveira Soares, A. S. Grosso, J. Ereño-Orbea, H. Coelho, F. Marcelo* "Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling". Frontiers in Molecular Biosciences 8 (2021), Review, http://dx.doi. org/10.3389/fmolb.2021.727847. (corresponding author)
-
C. D. L. Lima, H. Coelho, A. Gimeno, F. Trovão, A. Diniz, J. S. Dias, J. Jiménez-Barbero, F. Corzana, A. L. Carvalho, E. J. Cabrita, F. Marcelo* "Structural Insights into the Molecular Recognition Mechanism of the Cancer and Pathogenic Epitope, LacdiNAc by Immune-Related Lectins". Chem - A Eur J. 2021;27:7951–7958. DOI: 10.1002/chem.202100800 (corresponding author)
-
A. Gabba, A. Bogucka, J. G. Luz, A. Diniz, H. Coelho, F. Corzana, F. Javier Cañada, F. Marcelo, P. V. Murphy, and G. Birrane* "Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen". Biochemistry 60 17 (2021): 1327-1336. http://dx.doi.org/10.1021/acs.biochem.1c00009.
-
A. Diniz, H. Coelho, J. S. Dias, S. J. van Vliet, J. Jiménez-Barbero, F. Corzana, E. J. Cabrita, F. Marcelo* "The Plasticity of the Carbohydrate Recognition Domain Dictates the Exquisite Mechanism of Binding of Human Macrophage Galactose-Type Lectin". Chem. Eur. J. 25 61 (2019): 13945-13955. https://doi.org/10.1002/chem.201902780 (corresponding author)
-
J. Macías-León, I. A. Bermejo, A. Asín, A. García-García, I. Compañón, E. Jiménez-Moreno, H. Coelho, V. Mangini, I. S. Albuquerque, F. Marcelo, J. L. Asensio, G. J. L. Bernardes, H. J. Joshi, R. Fiammengo, O. Blixt, R. Hurtado-Guerrero* Francisco Corzana* "Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody". Chemical Communications 56 96 (2020): 15137-15140. FRONT COVER http://dx.doi.org/10.1039/d0cc06349e
-
F. Marcelo, N. Supekar, F. Corzana, J. C. van der Horst, I. M. Vuist, D. Live, G.-Jan P.H. Boons, D. F. Smith S. J. van Vliet* "Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: Implications for the molecular recognition of its ligands." J Biol Chem. 2019;294:1300–1311. DOI: 10.1074/jbc.RA118.004957
-
S. Santarsia, A. S. Grosso, F. Trovão, J. Jiménez-Barbero, A. Luísa Carvalho, C. Nativi*, F. Marcelo* "Molecular Recognition of a Thomsen-Friedenreich Antigen Mimetic Targeting Human Galectin-3". ChemMedChem 13 19 (2018): 2030-2036. http://dx.doi.org/10.1002/cmdc.201800525 (corresponding author)
-
A. Diniz; J. S. Dias; J. Jiménez-Barbero; F. Marcelo*; E. J. Cabrita*, "Protein-Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy". Chem. Eur. J. 23 53 (2017): 13213-13220. HIGHLIGHTED AS HOT PAPER https://doi.org/10. 1002/chem.201702800. (corresponding author)
-
H. Coelho, T. Matsushita, G. Artigas, H. Hinou, F. J. Cañada, R. Lo-Man, C. LeClerc, E. J Cabrita, J. Jiménez-Barbero, S. Nishimura, F. Garcia-Martin*, F. Marcelo*. "The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR". J. Am. Chem. Soc. 137 39 (2015): 12438-12441. http://dx.doi.org/10.1021/jacs.5b06787 (corresponding author)
-
F. Marcelo*, F. Garcia-Martin, T. Matsushita, J. Sardinha, H. Coelho, A. Oude-Vrielink, C. Koller, S. André, E. J. Cabrita, H. Gabius, S. Nishimura, J. Jiménez-Barbero, F. J. Cañada*. "Delineating Binding Modes of Gal/GalNAc and Structural Elements of the Molecular Recognition of Tumor-Associated MucinGlycopeptides by the Human Macrophage Galactose-Type Lectin". Chem. Eur. J. 20 49 (2014): 16147-16155. HIGHLIGHTED AS VERY IMPORTANT PAPER http://dx.doi.org/10.1002/chem.201404566 (corresponding author)
![proj2_edited.jpg](https://static.wixstatic.com/media/a33f3b_e9f391ebf1374545b77a27352b4b77c1~mv2.jpg/v1/fill/w_600,h_358,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/proj2_edited.jpg)
03
Mucin O-glycans and Bacteria Crosstalk in infection and cancer
![proj3_edited.jpg](https://static.wixstatic.com/media/a33f3b_357bc52e0a4b4bca973f5bd8ef46dc60~mv2.jpg/v1/fill/w_599,h_352,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/proj3_edited.jpg)
Towards structural elucidation of mucin O-glycosylation (catalysis) and recognition (GBPs binding) using a combined NMR and molecular modelling toolbox
Mucin O-glycan domains are major components of the gastrointestinal tract, and they act as recognition sites for adhesive GBPs of commensal and pathogenic bacteria. While mucin O-glycans act as a protective barrier against pathogens, some pathogenic bacterial strains (e.g. Salmonella) use them as contact points for adherence and invasion processes. Identification and structural characterization of the mucin O-glycans that participate in the adhesion and recognition process of bacterial GBPs, together with the elucidation of the mucin O-glycans/bacterial GBPs molecular complexes (including the characterization of the cellular substructure of the bacterial GBPs in the presence and absence of mucin O-glycans) are essential to understand infection mechanisms and to comprehend whether tumour-associated mucin O-glycans are bound to bacterial GBPs and if such interactions contribute to cancer progression.
This is the latest research line and was recognized with a CEEC contract on this topic (2020.03261.CEECIND, title “Picturing pathogen infection: A structure-functional approach to interrogate host-glycans/Salmonella crosstalk” - Dr. H. Coelho) and an exploratory grant (Reference: EXPL/QUI-OUT/0069/2021; title “Interrogating Salmonella/host-glycans crosstalk: Structure functional approach.” Dr. H. Coelho (PI) and Dr. Filipa Marcelo (CO-PI)).